Hydrocarbon Fuels (quick overview)

Most common hydrocarbon fuels are Alkyl Compounds and are grouped as:

Paraffins (alkanes): single-bonded, open-chain, saturated

 $C_n H_{2n+2}$

- n=1 CH₄ methane
- n=2 C_2H_6 ethane
- n=3 C_3H_8 propane
- n=4 C_4H_{10} butane
- n= 8 C_8H_{18} n-octane and isooctane

There are multiple isooctanes, depending on position of methyl (CH_3) branches which replace hydrogen atoms (eg. 3 H are replaced with 3 CH_3)

Hydrocarbon Fuels (cont'd)

Olefins (alkenes): open-chain containing one double-bond, unsaturated (break bond more hydrogen can be added)

 $C_n H_{2n}$

n=2
$$C_2H_4$$
 ethene
n=3 C_3H_6 propene

propene

Acetylenes (alkynes): open-chain containing one C-C triple-bond unsaturated

 $\begin{array}{cccc} C_n H_{2n-2} & n=2 & C_2 H_2 \ acetylene & H-C \equiv C-H \\ n=3 & C_3 H_4 \ propyne & acetylene \end{array}$

For **alcohols** one hydroxyl (OH) group is substituted for one hydrogen e.g. methane becomes methyl alcohol (CH_3OH) or **methanol** ethane becomes ethyl alcohol (C_2H_5OH) or **ethanol**

Atom Balancing

If sufficient oxygen is available, a hydrocarbon fuel can be completely oxidized, the carbon is converted to carbon dioxide (CO₂) and the hydrogen is converted to water (H₂O).

The overall chemical equation for the complete combustion of one mole of propane (C_3H_8) is:

$$C_{3}H_{8} + aO_{2} \rightarrow bCO_{2} + cH_{2}O$$

of moles ______ species

Elements can not be created or destroyed so carbon balance gives b=3hydrogen balance gives $2c=8 \rightarrow c=4$ oxygen balance gives $2b + c = 2a \rightarrow a=5$

Thus the above reaction is:

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

Generalized Atom Balancing

Air contains molecular nitrogen N_2 , when the products are low temperature the nitrogen is not significantly affected by the reaction, it is considered **inert**.

The complete reaction of a general hydrocarbon $C_{\alpha}H_{\beta}$ with air is:

$$C_{\alpha}H_{\beta} + \left(\alpha + \frac{\beta}{4}\right)(O_2 + 3.76N_2) \rightarrow \alpha CO_2 + \frac{\beta}{2}H_2O + 3.76\left(\alpha + \frac{\beta}{4}\right)N_2$$

The above equation defines the **stoichiometric** proportions of fuel and air.

Example: For propane (C_3H_8) α = 3 and β = 8

$$C_{3}H_{8} + (5)(O_{2} + 3.76N_{2}) \rightarrow 3CO_{2} + 4H_{2}O + 3.76(5)N_{2}$$

Generalized A/F Ratio Determination

The air/fuel and fuel/air ratio on a mass basis is:

$$(A/F)_{s} = \frac{1}{(F/A)_{s}} = \frac{\left(\alpha + \frac{\beta}{4}\right)\overline{M}_{O_{2}} + 3.76\left(\alpha + \frac{\beta}{4}\right)\overline{M}_{N_{2}}}{\alpha\overline{M}_{C} + \beta\overline{M}_{H}}$$

Substituting the respective molecular weights and dividing top and bottom by α one gets the following expression that only depends on the ratio of the number of hydrogen atoms to hydrogen atoms (β/α) in the fuel.

$$(A/F)_{s} = \frac{1}{(F/A)_{s}} = \frac{\left(1 + \frac{(\beta/\alpha)}{4}\right)(32 + 3.76 \cdot 28)}{12 + (\beta/\alpha) \cdot 1}$$

Note above equation only applies to stoichiometric mixtures

For methane (CH₄), $\beta/\alpha = 4 \rightarrow (A/F)_s = 17.2$

For propane (C₃H₈), $\beta/\alpha = 2.67 \rightarrow (A/F)_s = 15.6$